第354章:何谓“量子霸权”?(1 / 2)
<bisq)技术。www.126shu.com
如果约翰·普雷斯基尔来到叶华的科技别墅庄园,看到地下库的这台已然满足迪文森佐五大标准的量子计算机,估计回头就会写一篇纠错性质的文章,重新高举“量子霸权”的时代已经降临。
量子计算机的出现并不会瞬间为世界带来天翻地覆的变化,但它在高精尖科技研发领域的作用也是无可估量的。
叶华已然确定了量子计算机的十大应用场景。
【数字型量子模拟与模拟型量子模拟】,叶华要模拟人体基因阵列图谱,量子模拟应用必须得涉及,缺其不可。
另外九大应用场景分别是量子优化器、量子硬件测试平台、量子退森佐标准第四条,即:要有一种解决有效退相干的办法。
而叶华现在打造的这台量子计算机已然满足迪文森佐五大标准,是一台真正意义上的量子计算机,这64比特指的是能够同时进行并行运算的量子比特,对应的则是谷歌的9个量子比特,而谷歌对应的72个qubit,叶华这台量子计算机则是128个qubit。
imb公司公布的qubit数量也很多,但实际上的逻辑qubit大概只有6个左右。
谷歌用每8个一组来纠错,准确度也就70~80%左右,也就是逻辑门的保真度了,他必须要这么干,实际上纠错组越多就越靠近正确答案,但永远不能保证100%准确,这是个硬伤,当下全世界的量子计算机研究机构,除了叶华解决了退相干这个硬伤,没人能解决。
至于叶华研制的这台量子计算机是用什么来做量子比特,当然是用量子的某个双态系统了,就是用一个光子的两个自由度来做两个qubit。
64个量子比特就是64个光子,也就是128个qubit,并且他们相互纠缠,术语叫做ghz态,这是一种特殊的量子纠缠。
想要用多量子的ghz态其实是一件非常困难的时期,叶华用的64个光子,是用这些光子的动量、轨道角动量这两个自由度完成了128个qubit的ghz态制备和表征。
实际上许多欧美的物理学家认为用线性光学来做量子计算机的道路是走不通的,就是直接用光子的偏振、角动量、轨道角动量这些来做量子比特。
但潘建伟教授的团队率先实现了用光子的偏振、动量和轨道角动量三个自由度完成了ghz态的制备和表征。
↑返回顶部↑